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INTRODUCTION

We are mainly concerned with the smooth interpolation of convex data. We can
interpolate nonconvex data, but it is obvious that we cannot get piecewise conics to have more
than one continuous derivative at an inflection point. Inflection points may be few and far
between anyway. Twice differentiable piecewise cubics are commonly used for interpolation but
they carry no guarantee of shape preservation. They may be forced to preserve shape in the
sense of convexity or monotonicity, but this may entail giving up an order of differentiability
resulting in an interpolant of lower smoothness.

We make use of abridged notation that was popular among analytic geometers of the
nineteenth century but which seems subsequently to have fallen into disuse among analysts and
authors of modern texts on calculus and analytic geometry. The modern interest in practical
computer-aided geometric design seems to have revived it somewhat, however.

LINE MAPS

The function
I(x,y)=ax+by+c
where a, b, and ¢ are scalars and (x,y) is a vector in R represents one half of a general two-
dimensional affine transformation. We refer to it as a line map for short. If we write

I(x,y)=0

or simply
=0
we have what is called abridged notation for the equation of a line in the plane. We have only

one trivial theorem to prove regarding line maps. Suppose vector P is a real linear combination
of other vectors Q.

P=Xk,Q,

where

Qi =(x,.,y ,')

Hence,

P=Zk(x,y)=(Zkx,Zk;y)




Now let

I(x,y)=ax+by+c

where

K0,0)=c = K0)

Now,
I(P)=aZkx+bEky,+c
= Zk(ax;+by)+c
= Zk(IQ)-c)+¢
= Tk, 1(Q) +c(1-Zk)

Therefore, we have

KTk, Q)= ZkIQ)+0)(1-Zk)

and we see that a line map is a linear map if /(0)=0 and that a line map at least behaves in a
linear fashion if the coefficients of the linear combination sum to unity. In any case, we see how
a line map operates on a linear combination of vectors.

CONIC DERIVATIVES OR TANGENTS

We can use line maps to conveniently represent conics in abridged notation also. Let
P, (i-2 < n < i+2) represent a sequence of five points in the plane which appears to derive from
a single-valued convex function of a single variable. From the line

}")’1:)’1‘)’1
x-x, xJ-xI

we define the line map
l ”(x,y) =(y-y, ])(xj—x[) -(x-x 1)0’1_)’ 1)
and

lnx = lu(P x) = (yx—y 1)(x1'x1) _(xx_xl)(yj_y 1)

for arbitrary /#J and K.



Now select a four-element subsequence of the aforementioned five-element sequence of
points and let P, be an element of the subsequence. Also let 2 and A be distinct line maps such
that

ax,y)= xa +ya, +a, Alxy)= xAx+yAy+Ao

and
a(Pj) = A(Pj) =0

If P is a point on a conic through P, we have

y-y
P—Pj =(x—x;,y—yj) =(x—xj)( ,;_—;)= ayv
J

Now

a(P)= a(Pj+ av)= a(PJ.) +aa(v)-aa(0)= a(a(v)-a(0))

and similarly
A(P)= a(A(v)-A(0)

Hence
If we now let
P-P
we have
v ~(Ly)), P~ rB)=r,
where

,e a(l,yj') ~a, ax+ayyj’

J
A(Ly)-4, AzAy]




Solving the last equation for y;’, we get

/@, TA,
I"t A -a
74,78,

It is now only necessary to compute r; for a conic in order to compute the derivative of or the

tangent to the conic at P,

We must now define a connective graph relative to the four points of the subsequence.
Define exactly four edges such that each vertex has exactly two incident edges. Define a line
map corresponding to each edge such that line maps a and b are associated with nonadjacent
edges and line maps 4 and B are also associated with nonadjacent edges. Of course, a and 4
must be associated with the vertex at which we seek the derivative. The product of line maps a
and b is a degenerate hyperbola passing through the four points, as is the product of line maps 4
and B. Forming a linear combination of these line map products gives us "abridged notation" for
a family or pencil of non-degenerate conics through these four points.

ab+AAB=0

Requiring this equation to hold for a fifth distinct point determines the parameter A and the
unique conic through five points. The point in the original sequence but not in the subsequence
is called P,. So, we compute

__a(Pb(Py
APYB(P,)

Now, dividing the conic equation by 4, we have

rb+AB=0
or
AB
r=———m
b
Therefore

r.=-— AB(PJ) = a(P k)b(P k)B(PJ)
' b(PJ) A(PpB(P k)b(Pj)

We select the edges of our connective graph so that the denominator of r; is not zero. In
addition, we select them so that this is the case even when one of the middle three points is
collinear with its neighbors. All the graphs reflected in Table 1 have an hourglass edge pattern.



Table 1. Line Map Indices

i-2 i i-2,i+2 i-1i+1 i-2,i+1 i-1,i+2
i-1 i-2 i-1,i+1 ii+2 i-1,i+2 ii+1

i i+2 i-1,i i-2i+1 i-2,i i-1i+1.
i+1 i+2 i-1,i+1 i-2,i i-2,i+1 i-1,0
i+2 i i-2,i+2 i-1,i+1 i-1,i+2 i-2,i+1

Noting that

O ly=y1yp 6, Ly=x=%,

we have
y/=y1.—y1¢_'101fy14)
Tox x T x %)
R SYLSALRN
j
b Yy e B

where the I's and J’s come from the table. Using the table, we can therefore simply write down

the formulas for differentiating conics.
1 YiaVia a0 Vi)

i-2
X; 2= Xip T 2% 2 %i1)

l

li-z,i+2,ili-l,i+1,i i-1,i+2,i-2

2t 1
i-2,i+1,i "i-1,i+2,i %i-1,i+1,i-2

1 Yir Vi Tia Qi Ved)
i-1
Xy~ Ty (%)

r .= li-l,i+l,i-2 li,i+2,i—2 li,i+l,l-l
i-1
li-l,i+2,i-2 li,i+l.i-2 li,i+2,i-l




1_ Vit 7Y 027D

i
X X1 X %)

l l l

r.= i-1,i,i+27i-2,i+1,i+27i-1,i+1,i

i
li—2,i,i+2 li—l,i+l,i+2 li-2,i+1,i

r Vi1 Yia ™, 102 Yia)
i+l _ _ _ )
S A A P €A Y

_ li—l,i+1,i+2 li-2,i,i+2 li—l,i,i+1
ri+l l l l
i-2,i+1,i+2%i-1,i,i+2 "i-2,i,i+1

1 Yia Vi 20y Vi)
i+27
X2 Xia i1 %)

ro.= li—2,i+2,i li-l,i+1,x' li—2,i+l,i+2
i-1,i+2,i “i-2,i+1,i"i-1,i+1,i+2

These formulas for numerical differentiation based on conics can be used only when the data is
locally convex. One must therefore suffer the inconvenience of testing the data for this property
<" before using the formulas. Further caution is also needed in that although these formulas yield
results superior to corresponding polynomial based formulas, polynomials at least carry with
them the guarantee of single valuedness, whereas conics are globally bivalued. This being the
case, one must be sure that the conic formulas yield derivative values of the proper sign at initial
and final data points (j=i-2 or j=i+2). In any case, one can at least appreciate the value of
abridged notation at this point.

PIECEWISE CONIC INTERPOLANTS

Consider four consecutive points on a convex curve--the first and last being fixed. Define
line map a relative to the first two points, line map b relative to the last two points, line map 4
relative to the second and third points, and line map B relative to the first and last points. A
family or pencil of conics through these four points is therefore given by

ab+AAB=0
Now, let the second point approach the first and the third point approach the last. In this case,

a=0 and b=0 are lines tangent to the curve at the two fixed points. Line maps A4 and B coalesce
into a single line map, say c. The family of conics interpolating the curve is then given by




‘ ab+ic?=0

Denote the two fixed data points by P; and P,,,, the point of intersection of a=0 and b=0 by I,
and the midpoint of PP;,, by M. Of course,

a(P)=b(P, )= al)= KD=0

Define basis vectors u and v by

u=M-1=—_11
v=M-P= Pi+Pyy P__Pi+1_Pi
i 2 3 2

An arbitrary point P on our representative conic can therefore be expressed by

P;+P, P,,-P;
P=I+mu+nv=I+m '2' -1+ '2 :

=(1 “M)I‘*‘( m2—n )Pg+( m;n}Phl

Note that
lomspon min_,
2
Therefore,
a(P)= 7" a(P,,;)

b(P)= T 2b(P)
Letting

K;=a(P;,)b(P)
we have

a(P)b(P)= %(mz-nz)




Now let point Q lie on line ¢ = 0. But since P; and P,,, determine ¢ = 0, we have

c(Q)=0, Q=(1 -r)Pi+rPi+1

Operating on Q with a and b, we have

a(@=ra(P,y), HQ)=(1-NbP)

Eliminating parameter r, we get

L. 0@ _ b(P)- KQ)
a(P,.y) b(P)

or

a(Qb(P)+ H(Q)a(P,,)- K;=0

We therefore define c(P) as
c(P)=a(P)K(P)+ (P)a(P,,))- K;

= m+nKi+MKi_Ki
2 2
=(m-1)K,
From
A ,
a(P)b(P)+ _ZC(P) =0
we have

K, A,
—im?-n?+ “(m-1)K] =0
g mom)rm YK;

or equivalently
n*=m*+ 1K (m-1)*
This is therefore the equation of our family of conics in local (m,n) coordinates. Note from the

definitions of u and v that we want 0 < m < 1and - 1 < n < 1. Also, AK; must be negative. If
AK, < -1 or = -1 or > -1, the conic is an ellipse, a parabola, or a hyperbola, respectively.



If we now differentiate the last equation three times with respect to m, we have
nn=m+AK(m-1)
i +nii=1+4K,

3ni+ni=0

from which we conclude that
n=-1, n,,=1

A=-1, =1
fi=-AK, f,=AK,
R=3AK, Fiy=-34K,

In the following, let the prime denote differentiation with respect to x and the dot denote
differentiation with respect to m as before. Recalling that

P=I+mu+nv
x=I,+mu,+nv,

y=L+mu,+nv,

we have the following

ad (u,v,- u,v,)i
dm ° 3
(u,+nv))

ad wa (v, u,v )i, + 1ivy) -3v, %)
dm (u,+1iv,)’

y"=x

Abbreviating

ulv=uyv,-uv,




we have the first, second, and third nodal derivatives at the extremes of the subinterval:

n_ 34Ku /\"(111-1'1 -v,4K)
l (u,-v)’
m_ ~3AKuNAu, v +v, AK)

i+17
5
(u;+vy)

Now we evaluate the various expressions involving the components of u and v in terms of
the data and first derivatives. We leave out numerous algebraic steps for the sake of brevity.
First,

/ /

1, =V, +y; (U =V = VY, vy
20, -V, (¥ 4y
V0 tYia

/ /
Yis1 Vi

Uy

Ay,
qi=_—
Ax.

/
» A=Yi~4p Bx=)’i/+1 -q;

Hence

_n(%q ¥yl _-Ax(4;+B)
Ay, 24/

1

10




'Vl(Ai"'Bi) —y.= _BiAxi

u,-v,= 1
1™ Ay,-/ A)’,-/
-v,(A;+B) -AAx,
U, +v,= et /
Ay, Ay,
Now
Ax !
u2=v2+y,~’(u1 -v)= ' ,(q.-A)’:I’ZBsYi)
2Ay;
but
/ /
q.-A)’iI‘ZBs)’i/='AsYi+1‘Biyi
Hence
_ -Axi(A;)’iix*”Biyi/)
2 2Ay]
Also,
~qAx’(A;+B) Ax/(Ayl4+By) ABAx]
U,V,~ U, = ; + 7 B /
4Ay, 4Ay, 24y;

In addition,

I=M-u=P;+v-u=P, ,-v-u

Hence
BAx, AAlx,
Il=xi+ 7 =xi+1+ 7
Ay; Ay,
But also,
1 Y. / L Yis /
2 iy, 277 1=)’i+1
I~ L%,

11




Therefore, we have

We now define a and b explicitly and compute K.
a(x,y)=-y);~x)-x-x)1,-y)
b(x.y) =0~y ) %) ==X, ) Y,0)
Thus
-ABAx}
A)’i/

AiBiAxiz
/

Ay;

a(P+1) Ay;(l xi) Ax(Iz y,)"

BP)= ~AY My, ) DXLy,

-A’B’Ax}
K=a(P, )b(P)=———<0
/2
Ay;
We see here that A, must be positive. Now we are prepared to evaluate the second and third
“derivatives at the ends of the subinterval in terms of the (x,y) data, the nodal derivatives, and A

"_ A,Ku/\v

_1

YV HY
(ul_vl)?,

" AiK“AV 1

i+17 A
( 1‘*"1)3 2

BAx

/// SAiK-uAV(ul vl vll‘K) -31{4’ Ax

y, L(Ay/-1aA7BAx))

w_ ~3AKuNAw v+, AK) 31p?Axf(

i+l (ul +v1)5 2Al

Ay/+11ABIAX)

12



DERIVATIVE CONTINUITY

In this section, we use the conditions for continuity of the second and third derivatives to
derive a system of equations solvable for the nodal derivatives of a C? piecewise conic. Enforcing
continuity of the second derivative at x; gives us

3 3 3,.3
11 -IBi—lei-l = -AIAI' Ax,-

We notice here that if we were to assign all the nodal derivatives by conic differentiation, some
other local method, or even arbitrarily, we would only need to assign A on one subinterval and
use the previous continuity condition recursively to obtain all the other A’s for a C? piecewise
conic. There is definitely something to be said for interpolants of lower smoothness, especially in
the case of piecewise conics. For instance, we obviously do not want any more than C'
smoothness to link a curve with a line in the case of conics, since only degenerate conics can be
flat. But, since we have advertised the ultimate in smoothness for piecewise conics, we continue
in this direction. Enforcing continuity of the third derivative at x; gives us

A B Ax,-z_ -AAAx]
APl a2, e B~ O LB A
i-1 i

Now, we use the second derivative continuity condition to solve for 4, substitute the resulting
expression into the third derivative continuity condition, simplify, and finally solve the resulting
equation for ;.

AeAisAxis
Ry
B, Ax;.,
1= 2Bi—l(Ai—lAyi/Axi—l—BiAyi/—lei)
i 2 4
A, A;BAx, Ax,_,Ag; ,

The algebra involved in the last step is mildly tedious, but there are numerous fortuitous
cancellations. Now, enforcing continuity of the second and third derivatives at x;,, gives us

lﬁ? A-"is ==4 +1Ai3+1Axi3+1

3

A A Ax?
(Ay,ﬁ%,l,A‘Bf Ax:)=~—%l—'l (A)’i/u '%l.w i2+lBi+1Axi‘*l)

i+l

ABIAS?
Ai

In a similar manner, we now eliminate 4,,,, using the second derivative continuity condition, and
solve for A, in the condition for third derivative continuity, getting

13




Ay,-/Ax.

i+l

24.,.(B.

_ i+1VTi+1

AB’B,

i
i+l

-AAy/, Ax)
Ax:' Ax,,,Ag,

i+l

Now, we simply equate the two expressions defining 4,, and clear of fractions, getting

A AA, Ag Ax, B'+1Ayi/Ax'+l-AiAyiilei)

'Bi—lBerAinxm(Ai-lAyi/ Ax, 'BiAyi/—lei) =0

This equation, which is the main result of this section, is a necessary condition for. continuity of
the second and third derivatives at two neighboring points in terms of the data and first
derivatives at four neighboring points. It behaves quadratically in the two inner derivatives and
linearly in the two outer derivatives. We therefore refer to it as a component of a locally
quadrivariate quadratic system. It behooves us at this point to make a preliminary examination
of the system. We can write a component equation only for interior subintervals, because the
quadrivariate nature of each component equation forces us to exclude the first and last
subintervals. Assuming that we have n points of data, we can therefore write only n-3
component equations. This leaves us free to specify derivatives at the first and last points and
one interior point by either conic differentiation or other means. If we use conic differentiation
to specify the three derivatives and the data comes from a conic, the conic is preserved. This
gives us a numerical check on all the algebra. The need to set one internal derivative causes the
linear systems involved in Newton iteration to be pentadiagonal.

SYSTEM SOLUTION

This locally quadrivariate quadratic system is solved using Newton iteration. Initial values
for the unknown nodal derivatives can be computed using conic differentiation. We define the
following expressions for the sake of brevity.

a=A;, AA;Aq, Ax,
B;=B, BB, AqAx;,,
/ /
Ay Ax,, -4 Ay Ax,

8,=A, ,Ay/Ax, ,-BAy, Ax,

Y; =B

Our system component equations are therefore
f=aY~B6;=0
The system we wish to solve is therefore
f3H=0

augmented by three trivial equations. A Newton iteration is accomplished by solving the

14



linear(ized) system (augmented)
afy')= -f")

for dy’ and incrementing y’ by dy’. To write this system, we must now compute the partial
derivatives of the f’s. Abbreviate

8,=-9

k /
Y

Compute

0,.,4;=AA,,Aq; ,Ax,

0,a,=A, A9, A%,

9,,4;=A4; A Aq; | Ax,
0;,,%;=0

9;.,18;=0
9,8;=BB;,;Aq,A%,
9,.18;=B,_,B;.1Aq,Ax,,,

0,.2B=B, \BiAgAx,,

0;,7;=0
3,¥,=-B,,,Ax, ,-Ay/, Ax,
+A;Ax,

i 12 Rt £5 §
0,,,7:=B;.,Ax;
-AAx,

i i+17 i+l

8,,,7,~Ay/Ax,

i i+l

3, ,6,=Ay/Ax, | +BAx,
0,6;=-A; ,Ax,_,-B/Ax,
9,,10,74;,Ax, _Ayil—lei
3,,,8,0

a,f,-: “’.@'Y{" Yiajai—ﬂzajai_ 6iajpi

15




The linear system in which these expressions are used is given by

1-dy,=0
Ao dya+0,f Ay +0,f,dy, +0:f,dys=f,

ak—sz-ldyl:—z"“ k-lf;z—ldy;-l+abﬂ-ldykl+ k+1-ﬂ-1d)’k/+1=‘fk—1
1-dy;=0
/ /
Oy S8V S Y+ O e + Oy afirn= T,

3, o sBy-s+8, of s B 3+0y Sy sDn2* 0y oSy Bt =Tros
1 dy,f_1=0

Note that in the "f,," equation, the diagonal element of the matrix is associated with dy,," and
there are two nonzero terms to the right. Also note that in the "f," equation, the diagonal
element of the matrix is associated with dy,,,’ and there are two nonzero terms to the left. The
* linear Newton iteration system is therefore pentadiagonal.

NUMERICAL QUADRATURE

We now consider the use of conic splines for numerical integration using previously
obtained material. Considering a single subinterval, let A be the area between the conic and the
chord. Let P be a point on the conic and Q be a point on the chord such that P-Q is parallel to
u. Our element of area is therefore given by

dA=dQ NP-Q)
Now Q is given by
Q=P;+p(P,~P)=P+2pv

and P-Q is given by

P-Q=I+mu+nv-P;-2pv
=P +v-u+mu+nv-P,-2pv
=(m-Du+(1+n-2p)v

But since P-Q is parallel to u, we have

u N(P-Q)=0=(1+n-2p)u\v

and

16




p=n1
2
Hence,
dQ=vdn
P-Q=(m-1u
dA=vdn N(m-1)u
=uAW(1-m)dn
and finally,
1
A=ul\v f (1-m)dn
-1
Defining

-s?=AK,
and recalling that

n%=m?-s* (m-1)*

we can solve this quadratic equation for 1-m, getting

Lem= 1+/1-(-sH)(1-n?

1-s2

If we were now to plug this expression into the previous integral defining 4, we would be able to
obtain an analytic expression for the integral in terms of simple algebraic and transcendental
functions. Unfortunately, the resulting expressions are asymptotically unrobust in the numerical
sense. By this we mean that as the integration mesh becomes dense in the limit, s approaches
unity and produces numerically indeterminate forms. The fact that s approaches unity in the
limit is fairly easy to prove, but the algebra is somewhat tedious, so we omit the proof here. It
might be expected that conic splines would become (oriented) parabolic splines in the limit
anyway. We therefore opt for a quite robust infinite series development instead. Consider the
function

fo)=yT-x

where x is close to zero. Differentiating successively, we have
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foy=-30-x*

2k-1

f(k)(x)___ B 35 7‘2‘£:2k—3) a _x)— 2
= P
T (k-2)12%?

and therefore

f(k)(o) = (2k—3)' (k>1)
k! kl(k-2)! 222

We therefore have the Taylor series
k)(o)xk
fin=y, 2O
?2
(2k 3 xk
E 3 K(k-2)! 2%+

1% M
2 2 kI(k+2)12%2

from which we get

z (2k + 1)' X k+2
=0 kl(k+2)! 2%+2

Therefore,

—n2 1 1_s2)k+2(1 _nz)k+2
1TmasHan)-4s )(1 n?) o 2k+D)(
(i Z; Kl(k+2)! 2%+2

and finally,

__n E (2k+l)!(1—s2)k+1(l n2)k+2
2 = kl(k+2)1 2242

1-m=

This series is obviously very rapidly convergent and robust in the limit as s approaches unity.

must now integrate this series term by term with respect to n.
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l 1
k+1)1(1-sH)*! 2ks2
1-m)dn = z 1- dn
f (1-m) fl o kl(k+2)1 2%+ fl (1=

1
(2k+1)!(1 -s?t1 2k+2
1- 1- dn
f ndn k=0 kl(k+2)! 2%+ f -

Now, we must consider computing an integral of the form
1
[ a-x?pax
0
We do this by successive integration by parts, using the formula

b . b b x
[ fwe@dz=Ad) [ g - [ £ [ gttt ax

to finally obtain

[ sty 2200
o p+1)!

from which we get

fla gy DY
@k+5)!

-2
3

1
f 1-n%dn -4
) 31

We therefore have

E k+1)1(1-sH*! 224((k+2)1)*
3 5 K2 2% K2k+5)

fll-mdn
-1

which easily simplifies to

1 1o (=52
froninl )
-1 3 k=0 (2k+3)(2k+5)
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But,

AiB,Ax
2Ay;

ul\v=

Hence, we finally have

7 \3 i3 (@k+3)(2k+3)

A= ABAX] [ + . 1+'11Kt)k+1 ]
Ay

Now, if we simply add in the trapezoidal component of the integral, we have the following
general quadrature formula

Fie1 tBAx [ E (1+AiK)k+1 ]

£ y(x)dx—-(v Vi) ay/ \3 £5 GE+3)2k+)

Recalling that

2B, (A, ,Ay/Ax,_,-B Ay Ax)
A_A] BAx Axl 1Aql 1
(B, Ay, Ax, -A AyMAx,.)

i+l
AB; BMAx ‘Ax, Ag,

l+1 i+1

i+1

and that

AZB Ax!
S
i

A

we easily have that

i 2B, B(BAy, Ax,-A, Ay/Ax, )

i_

2
Ai—lei~1Aqi—1Ayi/
244,481 A%-B, ,AyAx,.)
B

Ax,

i+]

2
Ain)’i/

i+l

We have three different options with regard to using this quadrature formula. The first
and most accurate option is to compute the nodal derivatives for a C* conic spline and then use
the quadrature formula in conjunction with either of the two previous formulas. The second and
less accurate option is to simply obtain the nodal derivatives by conic differentiation and use the
average value provided by the two previous formulas. The third and least accurate option is
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again to use conic differentiation, but then to simply discard the infinite series altogether--
especially if the mesh is dense. This last option, though least accurate, is quite viable, since it
reéquires the least computation and integrates any oriented parabola exactly. In fact, these
quadrature formulas are sufficiently robust to accommodate infinite derivatives, provided that the
numerators and denominators of the conic derivatives are calculated separately (tangent vectors).
Since

A=yi-q b Ay Axdy-Aydy AN,
PO T dx, Ax, Ax,dx, Ax,dx

d)’id _ﬁ__ AiAdi+l
dx,, Ax; Axdx,’

/
Bi=¥;.1-49;=

- d.\d,
A)’i/=)’i,+1‘)’i/= ZM ‘%' d;c dxm’
sl X XA,

and
AAd, AAd,, |
ABAY Axds Axdr,, ' @AM, AA)
Ay dAd, dAd,,

i+l

dxidxi+1

The quadrature formula in this case is easily seen to be

xhl
_Ax 1 @AA)d,, AD)
e R e ey v
x, i+
It is instructive to compute
2
[ Vrdx=%

using this quadrature formula and

¥,=0, ¥;,,=1, Ax;=1, Ay=1
dx;=0, dy;#0, dx,,,=2, dy,,,=1
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SKETCHED INTERPOLATION

By sketching, we mean: starting with at least five data points (or fewer, if initial tangents
are specified) and during multiple passes over the accumulated data, computing the nodal
tangents by conic differentiation and inserting exactly one point between each two data points on
each pass using the previous expressions for 4K, We can thereby produce a set of discrete
points as dense as we wish to represent the curve. If the original points lie on a conic, the
generated points will also lie exactly on that conic. In addition, this method of sketching
accommodates itself not only to single-valued data but to double-valued data and closed curves
as well, because the expressions for A,K; may be cast into another more robust form. First, we
recall that

) 2B, B(BAy, Ax,-A,_Ay/Ax, )

Ai-lei—lAqi—lAyi/ ’
A,'=(Axi: A)’,—): d,' =(dxi’ dy,'), (a, b)/\(C,d) =ad-bc
Then we have

Ay By _ A AL,
Ax,,, Ax; AxAx;,,

Agi=9;,79~

We also have
B,Ay, Ax,-A, By/Ax, |
A,Ad, d_Nd, A, Ad_, d;\d,
= - A

i+1 i+1

= X, X,
Axdr,, dedy Axde, Cdrdy,

=E;T((A‘Ad‘*‘)(d"‘Ad")_(A"“Ad"‘l)(d" Ad, ")

i+l

and

A, Ad; AAd,,
B, B, _ Ax,  dx; Ax,dx,,,
A Ax,._lAq,-_lA}’,-/ 2 A Ad, Ax A AA(dAd,, Y

Ax, ,dx , - Ax,  Ax) dxdx,,

=dx,_ dxdx,, (A, Ad)(AAd,,) 2
(A Ad_ )8, ABYEA,,)

Then, multiplying the appropriate quantities, we finally have
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1K~ 2(4,  Ad)(ANd,,)
T B )AL A YA NG,

_Z(Ai-lAdi)(AiAdi+1)( (AtAdm)(di-lAdi) -1
(A, AD)E AL, ) | (A, Ad,_)d )

((AiAdi+l)(di—l Adi) -(A i-1 Adi-l)(diAdi+l))

This is the most robust form for computing a value of K; which ensures continui
and third derivatives on the left. This formula alone would be used for the last subinterval. -

Now recall also that

K- 24,A,,,(A,Ay/, Ax;~B, Ay/Ax,.,)

it

B, Ax,, Aql.Ayi, 2

i+l i

We then have that

A; Ay, Ax-B,

i+l

A'yi'Ax,.*1
A,./\diA d. /\d,.*z_A,.,,,/\d,.+2 d,./\d.

i+l i+l

=———rAaxX X1 &
Axdx, dx,,dx,, Ax dx,., dxdx;

i+l

1
=_————dxidxi+ldxm((A,./\d,-)(d,.,lAdM) -(A,., \d,.)d,\d,,.))
and
AiAdi Ai+1 Adi+1
Ad, _ Axdx, Ax,,dx,,,
B,.1A%;,

Ainin2 A,Ad, . AiAAm(diAdm ¥
Ax dv, Ax,.Akadxidxm

i+l

(A,Ad)(A,, NG
=dx,dx;, dx, ., : . 2
(A, /\di +2)(A,/\ AM)(d‘/\dM)

Multiplying the appropriate quantities, we then have
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_ Z(AiAdi)(Ai-d Adi+l)
o (Ai+1 Adi+2)(AlA Ai+l)(diAdi+l)2

Ad.,)( (A,Ad)d,,,\d,,,) —1]

(a Ad)d, A, )-(A,, /\di+2)(d,./\di+l))

_ Z(AiAd,')(Ai+1 i+1 i
(AN, DA, | (A, Ad A,

This is the most robust form for computing a value of AK; which ensures continuity of the second
and third derivatives on the right. This formula alone would be used for the first subinterval.
For interior subintervals, we compute a value for AK; for the left and right C? three point local
conic splines, insert a point on each, and take the midpoint of these. All we need do at this
point is to show how to compute a single point on the desired curve. Letting P be this point,
recalling that

P=I+mu+nv
n2=m?+ A K (m-1y=m*-s*(m-1)*

and letting n=0 gives us

But from

we have that

P=M-(1-mu=M--*
1+s

Now, it is only necessary to compute the components of u. Recalling that
Ax(A+B)
24y/
o Axi(Aiyi/+1+Biyi/)
i 24y,

u;=-

we have almost immediately that
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AANd, A,
X +
_ \Axdx, Axdx,,) @dAA)dx,  +(d, AA)dx,
zd,AdM 2(d,/Ad,,,)

dxdx,,,

u=-

Ai/\di dyid + Ai/\di#l dyi
x —
- | Axdx dx,,, Axdyx,,, dx, _ dAA)dy,,,+(d, AA)dy,
“ dAd,, 2(d,Ad,.,)

2t =
dxidxhl

RE-SKETCHING

The process of simple sketching produces a dense set of data quite smooth to the eye, but
an examination of the second derivative or of the curvature (in a Euclidean context) reveals a
certain erratic behavior. This microscopically erratic behavior can be eliminated, however, by the
process of repeated re-sketching during each pass over the accumulated data. The process of re-
sketching is as follows: On a given pass over the data and after a point has been inserted
between each of the previous data points, we recalculate the nodal tangents at each of the
previous data points using the previous points and the new points, throw away the new points,
and recreate them using the updated nodal tangents at the previous data points. We can
obviously repeat this process of re-sketching as many times as we wish per pass. Even only a few
re-sketchings per pass is sufficient to markedly "iron out" the previous erratic behavior of the
second derivative or curvature. What results is a pointwise interpolant that appears to have even
greater smoothness than C°. This might be expected, however, since global conic splines are
infinitely smooth everywhere except at the original data points. Another convenient aspect of
sketched interpolation is the fact that we need not specify any nodal tangents once and for all
because of degree of freedom restrictions, as we must with the global conic splines. On the
other hand, if we wish, we can specify any or all original nodal tangents once and for all. The
inherent flexibility of sketched interpolation is evident. The only thing that sketched
interpolation does not offer us is an analytic function describing the interpolant between each of
the original data points. But since we often obtain such an interpolant only in order to generate
a dense set of points on the interpolant anyway, sketching just eliminates the middleman and
gives us greater flexibility and smoothness to boot. Since we compute curvature for the sketched
curves in the Appendix, we develop here the formula for curvature at the midpoint of a three-
point C* conic spline for reference. The general formula for curvature is given by

"
=—Y

1o’y

Now, recall that the second derivative of a C* conic spline at node i is given by
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"n__ 4,47 Ax} __Ai3 Ax?2B; (A, Ayi/Axi—l_BiAyicl Ax)

Yi = >
2 2 A, A; B; Ax*Ax,  Ag,

A'Bi—l(BiAyil—l Ax-A, Ay i/Axi-l)
A, B AxAx Ag;

Breaking this expression down, we have
B,Ay/ Ax,~A, Ay, Ax, |

AANd,, d_Ad, A_Ad, d;\d,,,
= 1] Ax 1 LI 1 i Ax__l
Axdy,, ‘dx_jdx; Axdx T dxdx,

e (VAL BV R CHRLE AR CHEA)
-1 il

and
A,.Ad,. A,._lAd,,

Axdx; Ax,_ dx,
d. A, AA,

i+1

AB,_, _
A, BAx,Ax  Agq,, A Ad_ AN
Ax,_,dx,_, Ax.dx,, e Ax, ,Ax,
_ dx,_ dx,,, (A,./\di)(Al._l /\di)
dx,2 (Ai—lAdi~1)(AiAdi+l)(Ai—lAAi)

Multiplying the appropriate quantities together, we then have
; =— UG : A.Ad., )(d._ Ad)-(A, ,Ad,_)dAd,
Y; dx? (Ai_lAdi-l)(A,’Adid)(A,‘_lAA,')(( i x+1)( i-1 z) ( i-1 x—l)( i l+l))

(A Ad)AAd)( d A, dAd,\_ 1 E
A, A, A Ad L AN, —dx,-a

-1
dx?

Therefore the curvature is
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FINAL NOTE ON TANGENTS

We now present a more straightforward and elegant derivation of the general formula for
a tangent to a conic. This derivation involves the wedge product, which we have previously
defined as a real-valued binary operation on two-dimensional vectors:

ul\v =(u )NV, V) =u,v,-uv,
The wedge product is, of course, just the oriented area of a parallelogram embraced by the two

vectors. Note that area and wedge product are affine concepts rather than Euclidean ones.
Using the previous definition, it is trivial to prove that

(u +VAw =uAw +vAw

and
duAv)= duNv +u\dv

The equation of a line through two points is given by

X ‘xi xj—xl.
or
()")’,-)(xj "x,') -(x —x,')(yj -y ,') =0
=(xj -xp)'j -y 1)A(x ~Xpyy 1)
=(P,-P)\(P-P)
=4,NP-P)

A line map may therefore be defined in terms of wedge product:

1,(P)=4,;NP-P)

from which we immediately have
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dl(P)=A P

Recall that the equation of a conic in abridged notation is *
a(P)K(P)+ AA(P)B(P)=0
where a, b, A, and B are line maps and P is a point on the conic. In the case of line map a, for

instance, we have

a(P)=(P, -P,)NP-P,)
=4,, NP-P,)
= A, \P-P,)

da(P)= AP

Now, differentiating the equation of a conic, we have

a(P)db(P)+ b(P)da(P)
+A(A(P)dB(P) + B(P)dA(F))=0

a(P)A,AdP+b(P)A AP
+A(A(P) Ay AdP+B(P)A ;,AdP)=0

and finally
T(P)AdP=0

where

T(P)= a(P)A,+B(P)A + A(AP) Ay +B(P)A,)

Hence, dP and T(P) are parallel and T(P) is a tangent vector to the conic. As before, if P, is a
point on the conic for which none of the line maps are zero, we have

_ a(Pb(Py

A(PYB(PY

and
T(P)= a(P)4,+b(P)4,

_a(PYb(P) .
AE0EEy AP EPA)

Another tangent vector proportional to this one is therefore
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_a(P)A,+b(P)A, AP)AL+B(P)A,

“® a(PYb(P,) A(P)B(P)

In the earlier section on conic differentiation, we sought the derivative or tangent at P; and
contrived to make

a(P)=A(P)=0

The tangent vector in this case simplified essentially to

bP)A, B(P)A,

P -
" a(P)b(P) A(PYB(Pp

as it does here also. However, if one or two pairs of the five original points on the conic
coalesce, however, which is to say that one or two tangents are specified for a conic through four
or three points respectively, then we cannot use the simpler tangent formula and must resort to
the more general one where one or two of the A’s would be the specified tangents at the
‘coalesced points. Note also that before two points are allowed to coalesce, they must be linked

-by a line map. Another important point that should be noted here is that in the case of strictly
convex data, we can use the general formula for #(P) to calculate the tangent at any data point
after having made any reasonable selection of line maps and associated vectors once and for all!
This eliminates all the special cases mentioned in the previous section on conic differentiation,
making the algebra more compact and the programming more straightforward.

CONIC SECOND DERIVATIVES

In addition to obtaining tangents to local interpolating conics, one may occasionally wish
also to obtain second derivatives of these interpolants. Recall that the general formula for a
tangent to an interpolating conic is

_aP)A+b(P)A, AP)Az+B(P)A,

up) L L

where

L=a(P)b(P,)  L,=A(P)B(P)

Define the component functionals for an arbitrary vector v as

x(V)=x((v;,v))=v, YW= W (v,v))= v,
Since

(P % 0=t A(Ly)=x(t)y"-¥(®)
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we have, trivially, that

130
)
Differentiating
tA(1,y")=0
we have
dt N1,y +t NO,dy")=0
dt 1,2(-9)+x(t) =0
{125 0%
-x(t)2dy'=dt\¢
_ "o g{ N
x(®)y %
But
ia"AbJ'QAa EAEQAA
dt_ dx dx ¢ dx dx
dx I L,
and since
dP ¥t t
L ayH<1,22 = —
& " ( x(t)) x®
we have

d@_(A N4, 8 M4, (44,4804,
dx L L,

x(®)

Taking the wedge product of the last equation with ¢, we have

244N 24, M)A N)
lk Lk

dat,._
x(t)z/\t-

from which we finally obtain the general formula for the second derivative of a local
interpolating conic:

== 2 [(AaN)(Ab/\t)_(AA/\t)(Av/\t)
x|k L

30




From this, we immediately have a compact formula for the magnitude of the Euclidean curvature
of a local interpolating conic:

k= 2[(A M)A )1 -(A A)(A )L, |

3
x(®*+y(1)*1?

DEALING WITH INFLECTION POINTS

In order to make this development reasonably complete, it is necessary to deal with data
that may have an occasional inflection point. We say that section i of the data has an inflection
point if

w1w2<0

where

w, =(P,-P,_)NP,,,-P)
w,=(P,,;~P)NP,,-P,,})

What we wish to do in this section is to augment the data with additional inflection points and
establish constant tangents at these inflection points. Of course, the resulting interpolant is only
C! at these points. The problem then is twofold. We must establish a location and a tangent for
each inflection point. For the method we describe, we must assume that the data is convex for a
sufficient number of points both preceding and following the section in which we wish to insert
the inflection point. Suppose we wish to insert an inflection point somewhere between P; and
P,,,. Define the following sets.

¥

m, =(P;|i-3<js<i}
mp={P,li+1<jsi+4}
Also let
L(P)=conic through =,U{P}

R(P)=conic through = U{P}

In addition, define line maps a,,b,,4,,B, with respect to 7, and line maps ag,bg,Ag,BgWith
respect to 7. Now, insert a point U (as in sketching) on the leftmost section of R(P;) and a

- point ¥ on the rightmost section of L(P;,,). If we momentarily consider the conic pairs

[L(U),R(U)] and [L(V),R(V)], it becomes obvious that a unique point W exists on the line
segment UV such that L(W) and R(W) have the same tangent (direction) at W. The point W is
given by
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W=A-nU+r¥V 0<r<l

and we seek the value of r for which

LN=t,(MAt(W)=0

where
t(W)= Ab,_ + AaL _ ABL _ AAL
77 b W) a (W) B(W) A(W)
£ (W)= Ab‘ Aa, Aa, ) AA‘z

bW agW) By(W) AgW)

Note that we have made use of the general formula for the conic tangent here with P.=W. The
zero of f can be found by any number of methods. When the proper value of r has been
established, W and t(W) will already have been computed.

REVIEW AND CONCLUSIONS

We have shown how to obtain convexity preserving piecewise conic interpolating
functions having three orders of differentiability at each data point. But, although the title of
this report reflects this desired goal, the global C? conic spline appears (to the author, at least) to
be of somewhat lesser value than other elements of this report. More important or more
practical aspects of this work seem to be the simple and general formulas for conic numerical
differentiation, the simple formula for oriented parabolic numerical integration which can make
use of conic numerical differentiation, and sketched interpolation, which makes use of both conic
numerical differentiation and the main algebraic machinery behind C* conic splines. The fact
that sketched interpolants have apparent smoothness in excess of C? is due in part to the fact
* that none of the nodal tangents (except the ones one might wish to allow to remain fixed) are
finally established until the last re-sketch of the last pass. Since sketched interpolants are not
analytic functions, but merely discrete point sets, we can say nothing more precise about their
added smoothness other than to refer to them as apparently C**.

The author apologizes for the lack of diagrammatic aids in this report, but he feels that
verbal and algebraic precision more than make up for this lack. A picture is not always worth a
thousand words, or even a hundred, if the words are sufficiently well-chosen ones. For those
who disagree, however, we include in the Appendix some plots of sketched interpolants with
various levels of re-sketching and accompanying polar plots of curvature with respect to the
centroid of the region enclosed by the interpolant.
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